Activation of serum/glucocorticoid-induced kinase 1 (SGK1) is important to maintain skeletal muscle homeostasis and prevent atrophy
نویسندگان
چکیده
Maintaining skeletal muscle mass is essential for general health and prevention of disease progression in various neuromuscular conditions. Currently, no treatments are available to prevent progressive loss of muscle mass in any of these conditions. Hibernating mammals are protected from muscle atrophy despite prolonged periods of immobilization and starvation. Here, we describe a mechanism underlying muscle preservation and translate it to non-hibernating mammals. Although Akt has an established role in skeletal muscle homeostasis, we find that serum- and glucocorticoid-inducible kinase 1 (SGK1) regulates muscle mass maintenance via downregulation of proteolysis and autophagy as well as increased protein synthesis during hibernation. We demonstrate that SGK1 is critical for the maintenance of skeletal muscle homeostasis and function in non-hibernating mammals in normal and atrophic conditions such as starvation and immobilization. Our results identify a novel therapeutic target to combat loss of skeletal muscle mass associated with muscle degeneration and atrophy.
منابع مشابه
Serum- and glucocorticoid-inducible kinase 1 mediates salt sensitivity of glucose tolerance.
Excess salt intake decreases peripheral glucose uptake, thus impairing glucose tolerance. Stimulation of cellular glucose uptake involves phosphatidylinositide-3-kinase (PI-3K)-dependent activation of protein kinase B/Akt. A further kinase downstream of PI-3K is serum- and glucocorticoid-inducible kinase (SGK)1, which is upregulated by mineralocorticoids and, thus, downregulated by salt intake....
متن کاملDenervation atrophy is independent from Akt and mTOR activation and is not rescued by myostatin inhibition
The purpose of our study was to compare two acquired muscle atrophies and the use of myostatin inhibition for their treatment. Myostatin naturally inhibits skeletal muscle growth by binding to ActRIIB, a receptor on the cell surface of myofibers. Because blocking myostatin in an adult wild-type mouse induces profound muscle hypertrophy, we applied a soluble ActRIIB receptor to models of disuse ...
متن کاملGlucocorticoids can activate the α-ENaC gene promoter independently of SGK1
The role of SGK1 (serum- and glucocorticoid-induced protein kinase 1) in the glucocorticoid induction of alpha-ENaC (epithelial Na+ channel alpha subunit) gene transcription was explored by monitoring the transcriptional activity of a luciferase-linked, alpha-ENaC reporter gene construct (pGL3-KR1) expressed in H441 airway epithelial cells. Dexamethasone evoked a concentration-dependent (EC50 a...
متن کاملPPARβ/δ Regulates Glucocorticoid- and Sepsis-Induced FOXO1 Activation and Muscle Wasting
FOXO1 is involved in glucocorticoid- and sepsis-induced muscle wasting, in part reflecting regulation of atrogin-1 and MuRF1. Mechanisms influencing FOXO1 expression in muscle wasting are poorly understood. We hypothesized that the transcription factor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) upregulates muscle FOXO1 expression and activity with a downstream upregulation of atro...
متن کاملNegative regulation of SEK1 signaling by serum- and glucocorticoid-inducible protein kinase 1.
Serum- and glucocorticoid-inducible protein kinase 1 (SGK1) has been implicated in diverse cellular activities including the promotion of cell survival. The molecular mechanism of the role of SGK1 in protection against cellular stress has remained unclear, however. We have now shown that SGK1 inhibits the activation of SEK1 and thereby negatively regulates the JNK signaling pathway. SGK1 was fo...
متن کامل